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Abstract The relationship between bone and fat formation within the bone marrowmicroenvironment is complex
and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship
between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipoctye and
osteoblast lineage pathways. In this review, we focus on the recent literature exploring the mechanisms underlying these
differentiation events and discuss their implications relevant to osteoporosis and regenerativemedicine. J. Cell. Biochem.
98: 251–266, 2006. � 2006 Wiley-Liss, Inc.
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Research from a number of fields documents
the close relationship existing between bone
and fat formation. Studies suggest that the
marrow cavity is like a playground ‘‘see-saw’’
that can swing back and forth between bone and
fat formation. For over a decade, the field has
been dominated by the hypothesis that an
inverse relationship exists between adipocytes
and osteoblasts within the marrow cavity
[Beresford et al., 1992; Dorheim et al., 1993].
In vitro studies using bone marrow-derived
mesenchymal stem/stromal cells found that
agents inducing adipocyte differentiation
[Beresford et al., 1992; Dorheim et al., 1993].
Likewise, agents inducing osteoblast differen-
tiation inhibited adipogenesis [Gimble et al.,
1995]. These findings were consistent with
classic pathological [Custer and Ahfeldt, 1932;
Vost, 1963; Hartsock et al., 1965] and epidemio-
logical studies [Meunier et al., 1971] linking
increased marrow adiposity with aging, bone
loss, and osteoporosis. We [Gimble, 1990;
Gimble et al., 1996a; Nuttall and Gimble,
2000, 2004; Gimble and Nuttall, 2004] and
others [Tavassoli, 1984; Weiss and Sakai,
1984; Chan and Duque, 2002; Kirkland et al.,
2002] have reviewed the literature relating to
this subject in past years.While awealth of data
supports thismodel, recent findings have begun
to present a strong challenge to this paradigm.
The current update focuses on the most recent
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findings describing the interdependency
between adipogenesis and osteogenesis.

THE BIG KIDS ON THE PLAYGROUND:
NUCLEAR HORMONE RECEPTORS

The nuclear hormone receptor family of
transcriptional regulatory proteins is activated
by a range of ligands, including the classical
‘‘steroid hormones,’’ naturally occurring meta-
bolites, synthetic chemicals, and as yet to be
identified endogenous compounds (orphan
receptors). Members of the nuclear hormone
receptor family control critical adipogenic and
osteogenic steps.With the development of novel
synthetic ligands with agonist, partial-agonist,
or antagonist properties and gene-specific
mutant mice, it is now possible to do both loss
and gain of function studies to dissect these
processes.

PPARs—Phat Pharm(a)

The peroxisome proliferator activated recep-
tor g (PPARg) plays a central role in initiating
adipogenesis, in bone marrow and other stro-
mal-like cells in vitro [Gimble et al., 1996b].
Thiazolidinedione PPARg ligands such as rosi-
glitazone (Avandia1) and pioglitazone (Actos1)
play a prominent role in the treatment of type 2
diabetic patients. In vitro analyses demonstrate
that various PPARg ligands (rosiglitazone, 9,10
dihydroxyoctadecenoic acid, 15-deoxy12,14-
PGJ2) not only induce murine bone marrow
stromal cell adipogenesis but also inhibit osteo-
genesis [Lecka-Czernik et al., 2002]. Indeed,
there is evidence that the adipogenic and
osteogenic processes can be separated through
the use of partial agonists. For example, the
PPARg ligands GW0072 and netoglitazone,
both members of the thiazolidinedione family,

can block osteoblast differentiation without
inducing adipogenesis in murine cell lines
[Lecka-Czernik et al., 2002; Lazarenko et al.,
2005]. Development of a thiazolidinedione with
bone sparing and insulin sensitizing properties
but without adipogenic activities would be of
potential improvement over existing therapeu-
tic compounds. There is new evidence regarding
the nature of endogenous or in vivo PPARg
ligands [Tzameli et al., 2004; Schopfer et al.,
2005]. Although long chain fatty acids have
been known to activate PPARg at micromolar
levels [Tzameli et al., 2004], there is now
evidence that nitric oxide derivatives of linoleic
acid are potent adipogenic agonists at levels of
133 nM, well within the physiological range
[Schopfer et al., 2005]. It remains to be deter-
mined if these putative endogenous PPARg
ligands inhibit osteogenesis.

A number of groups have extended their
analyses of individual PPARg ligands to in vivo
models. Under these conditions, not all PPARg
ligands exhibit the same effects and this may
reflect differences between their receptor bind-
ing affinity and conformation of the receptor/
ligand complex. For example, long-term treat-
ment of mice with the thiazolidinedione tro-
glitazone increased bone marrow adipocyte
content without reducing bone mass and trabe-
cular volume [Tornvig et al., 2001]. In contrast,
treatment of mice with rosiglitazone, a thiazo-
lidinedione with higher affinity for PPARg,
decreasedbonemineral content, bone formation
rates, and trabecular bone volume while
increasing adipogenesis [Rzonca et al., 2004;
Ali et al., 2005]. Similar results were observed
when ovariectomized rats received rosiglita-
zone [Sottile et al., 2004]. In part, rosiglitazone
inhibited bone formation through a suppression
of the osteogenic transcription factors, Runx2/
Cbfa1, osterix, andDlx5 [Rzonca et al., 2004; Ali
et al., 2005; Lazarenko et al., 2005]. Consistent
with this is the observation thatnetoglitazone, a
thiazolidinedione with less osteogenic inhibi-
tory function relative to rosiglitazone, induced
adipocyte genes such as aP2/FABP4 without
reducing levels of Runx2 or Dlx5 [Lazarenko
et al., 2005]. An inter-play between PPARg and
Runx2 may underlie the association between
advancing age with increased marrow adipo-
genesis and increasedbone loss [Moermanetal.,
2004]. Similar age-related changes occur in
muscle satellite cells [Taylor-Jones et al.,
2002]. The muscle satellite cells resemble
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mesenchymal stem cells, acquiring adipocyte
characteristics and activating PPARg [Taylor-
Jones et al., 2002]. Therefore, this process could
be common to multiple adult or somatic stem
cells as they age.
New findings suggest that a shared co-

activator protein, known as the transcriptional
co-activator with PDZ binding motif (TAZ),
accounts for such a link between Runx2 and
PPARg [Hong et al., 2005]. In murine cell
models, the TAZ protein co-activated Runx2
and osteogenesis while suppressing PPARg and
adipogenesis [Hong et al., 2005]. Thus, addi-
tional components of the transcriptional com-
plex may influence a cell’s lineage commitment.
Mutations of the PPARg gene are associated

with an altered balance between bone and fat
formation in the marrow. Independent groups
have examinedPPARgdeficientmurinemodels.
A congenital mutation in the PPARg2 locus is
found in PPARg hypomorphic mice [Cock et al.,
2004]. These mice, which are ‘‘lipodystrophic,’’
show reduced PPARg1 and PPARg2 mRNA
levels in the residual white adipose tissue
depots [Cock et al., 2004]. At the same time,
themice display enhancedbone formation to the
point where the volume of the marrow cavity is
so compromised that hematopoiesis moves to
extramedullary sites, such as the spleen [Cock
et al., 2004]. In some respects, this resembles
the osteosclerosis observed in mice exposed to
supraphysiologic concentrations of estradiol,
the estrogen receptor (ER) ligand [Medina and
Kincade, 1994]. Targeted mutations in the
PPARg gene resulted in homozygous animals
where death occurred at embryonic day 10.5–
11.5 [Akune et al., 2004]. Subsequent in vitro
studies of PPARg�/� embryonic stem cells
demonstrated that the cells spontaneously
displayed osteogenic function and failed to
respond to adipogenic stimuli [Akune et al.,
2004]. In the young, viable heterozygous mice
(PPARgþ/�), increased bone mass in vivo was
associated with an �twofold increase in osteo-
blast formation and an �twofold decrease in
adipocyte formation by bone marrow mesench-
ymal stem cells (MSCs) in vitro [Akune et al.,
2004]. Consistent with this observation, the
PPARgþ/� phenotype was associated with ele-
vated mRNA levels of the osteogenic genes
Runx2, osterix, and Lrp5 [Kawaguchi et al.,
2005].
These findings indicate that PPARg is a

hypothetical drug target for age-related bone

loss intervention [Duque, 2003;Moerman et al.,
2004]. Other PPAR proteins may prove to be
complementary targets. In studies using cells
derived from PPARb/g�/� deficient mice, the
absence of the PPARb/g protein reduced
the adipogenic response to thiazolidinedione
[Matsusue et al., 2004]. Moreover, in cells from
wild-type controls, the further additon of a
PPARb/g ligand, L165041, modestly increased
adipocyte differentiation [Matsusue et al.,
2004]. Thus, simultaneous manipulation of
multiple PPAR pathways, relying on exogenous
or endogenous ligands, may provide a novel
approach to bone loss prevention and therapy
[Schopfer et al., 2005].

Classical Steroid Hormones
(ER, TR, VDR)—Old School

New experimental tools, such as gene micro-
arrays, are being used to document the relation-
ship of classical steroid hormones to bone and
fat formation in marrow. One study has exam-
ined the skeletal phenotype of mice deficient in
both thyroid receptors a and b (TRa and TRb)
using a combination of gene microarrays and
quantitative real time PCR [Kindblom et al.,
2005]. The TRa�/�/TRb�/� mice exhibited
increased mRNA levels for adipocyte specific
genes and a >200% increase in bone marrow
adipocyte numbers based on histomorphometry
[Kindblom et al., 2005]. The authors suggest
that the increased amount of fat in bonemarrow
could be caused by a reduction in the activity of
the GH/IGF-1 axis, although it cannot be
excluded that T3 itself exerts direct effects on
adipocyte/osteoblast differentiation indepen-
dent of the GH/IGF-1 axis. These changes
correlated with reduced trabecular and total
bone mineral density [Kindblom et al., 2005].
The inbred SAM-P/6 murine strain provides a
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model of accelerated senescence characterized
by osteopenia and increased bone marrow fat
mass [Kajkenova et al., 1997]. Recent studies
found that 1,25 (OH)2 vitamin D3 treatment
inhibited adipogenesis and enhanced osteogen-
esis in the SAM-P/6 mice [Duque et al., 2004a].
This correlated with a 50% reduction in PPARg
mRNA and protein levels [Duque et al., 2004a]
as well as a decrease in oil red O positively
stained cell numbers [Duque et al., 2004b].
Gene microarray analyses demonstrated a
coordinated induction of osteoblastogenic genes
and a reduction of adipogenic genes following
1,25 (OH)2 vitaminD3 [Duque et al., 2004b]. The
1,25 (OH)2 vitamin D3 treatment effected not
only bone formation but also bone resorption
based on circulating biomarkers of bone turn-
over [Duque et al., 2005].

The effects of estrogen on bone and adipose
tissue formation have long been recognized in
rat and canine ovariectomy models [Martin
et al., 1990; Martin and Zissimos, 1991]. In
humans, changes in estrogen status due to
advancing age and menopause have been
correlated with increased levels of cytokines
IL-6 and IL-11, both associated with bone loss
[Cheleuitte et al., 1998]. In vitro studies using
murine bone marrow MSCs have found that
estrogen reciprocally promotes osteoblastogen-
esis while inhibiting adipogenesis [Dang et al.,
2002; Okazaki et al., 2002]. This process can be
mediated by either ERs a or b, based on
transfection approaches [Okazaki et al., 2002].
Indeed, there is evidence that the homologous
orphan receptor, estrogen related receptors
(ERR) a and b may also contribute to MSC
lineage commitment [Bonnelye et al., 2001,
2002; Bonnelye and Aubin, 2002, 2005]. It is
interesting to speculate whether the increase in
adipogenesis subsequent tomenopause is due to
a relief of repression or an induction of the
adipogenic phenotype. In vitro culture systems,
albeit artificial, may argue that the default
‘switch’ is adipogenesis and that this process is
inhibited normally in vivo prior to estrogen
depletion.

In vitro studies using murine bone marrow
MSCs have found that the soy phytoestrogen
diadzein exhibits a dose-dependent biphasic
action on osteoblastogenesis [Dang and Lowik,
2004]. This reflects a balance between the ER
and PPARg levels [Dang and Lowik, 2004]. The
phytoestrogens activated ER and downregu-
lated PPARg transcriptional activity in trans-

fection experiments [Dang and Lowik, 2004].
Similar studies inhumanMSCshave found that
the soy isoflavone genistein induced osteogen-
esis based on Runx2/Cbfa1, alkaline phospha-
tase, and transforming growth factorb (TGFb1)
mRNA levels and decreased adipogenesis based
on C/EBPa, PPARg, lipoprotein lipase, and
adipsin mRNA levels [Heim et al., 2004].

Overall, these recent findings involving clas-
sical steroid receptors support the inverse
relationship between adipogenic and osteogenic
differentiation in the bone marrow microenvir-
onment. This is mediated, in part, through
cross-talk between the pathways activated by
steroid receptors, the PPARs, and other cyto-
kines and paracrine factors.

LXR, Cholesterol, and Oxysterols—Problem
Children in the Junk Food Nation

The LXR gene was originally identified as an
‘‘orphan receptor’’ based on its heterodimeriza-
tionwith the 9-cis retinoic acid receptor retinoid
X receptor (RXR) [Willy et al., 1995]. Follow-up
studies rapidly identified oxysterols, choles-
terol, and bile acid metabolites as its endogen-
ous ligands [Janowski et al., 1996]. It is likely
that oxidized lipids are in close contast with
osteoblasts. Lipoproteins and lipids accumulate
in bone and undergo oxidation, and bone
contains a significant number of blood vessels,
with cellular constituents of bone localized in
close proximity to the interwoven vascular beds.
We speculate that the LXR proteins, as recep-
tors for cholesterol-derived ligands, may med-
iate osteogenic mechanisms. This is supported
by studies inmurinemodels have demonstrated
that the statin compounds, which inhibit HMG
CoA reductase and cholesterol synthesis,
improve bone formation rates [Mundy et al.,
1999]. In murine bone marrow-derived MC-
3T3E1 cells, simvastatin enhanced mineraliza-
tion and the expression of osteoblast and
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vasculogenic gene markers [Maeda et al., 2001,
2003, 2004]. These actions were blocked by
intermediate compounds in the cholesterol
synthetic pathway [Maeda et al., 2004]. In
contrast, mevastatin treatment of the murine
bone marrow-derived M2-10B4 cells inhibited
osteoblast differentiation and mineralization
[Parhami et al., 2002]. Simultaneous addition
of some, but not all, cholesterol synthetic
intermediates reversed this action [Parhami
et al., 2002]. Further studies in this cell line
have demonstrated that specific oxysterols,
such as 20S and 22R hydroxycholesterol, enha-
nced osteogenesis, both alone and in synergy
with bone morphogenetic protein (BMP2) [Kha
et al., 2004]. The same oxysterols inhibited
adipogenesis induced by the PPARg ligand
troglitazone [Kha et al., 2004]. While some
findings provide a hypothetical link between
hyperlipidemia and osteoporosis [Parhami,
2003], the data relating to the osteogenic effect
of putative LXR ligands differs betweenmurine
MSC models.
Independent studies in murine 3T3-L1 cells

linkLXR toadipogenesis.Amicroarrayanalysis
identified LXR as an mRNA induced during
adipocyte differentiation [Ross et al., 2002].
This can be explained by the fact that the LXR
promoter is activated by PPARg [Juvet et al.,
2003; Hummasti et al., 2004]. While an LXR
ligand alone had no effect on 3T3-L1 cells
differentiation, inappropriate overexpression
of LXR in the presence of ligand inhibited
adipogenesis via the Wnt signaling pathway
[Ross et al., 2002]. Homozygous LXR�/� mice
have smaller adipose tissue depots compared to
their wild-type littermates, suggesting that
LXR regulates lipid storage [Juvet et al.,
2003]. Indeed, there is evidence that LXR
activates the PPARg promoter and enhances
adipogenesis in 3T3-L1 cells [Seo et al., 2004]. In
summary, while there is evidence-linking LXR
to adipocyte and osteoblast differentiation and
function, the results of independent experi-
ments are not entirely consistent. Further
studies will be required to clarify the nature of
this relationship.

OUTSIDE-IN SIGNALING

Multiple transmembrane signalingpathways
regulate adipocyte and osteoblast differentia-
tion and function. These pathways function
independently and/or as part of a network. This

section covers recent findings relating to the
pathways listed in Table I.

Leptin, a secreted ‘‘adipokine,’’ modulates
adipocyte and osteoblast metabolism and func-
tion. Evidence from multiple sources suggests
that the route of leptin delivery determines the
nature of its effect. In vitro studies by Thomas
et al. [1999] found that leptin blocked human
bone marrow MSC adipogenesis while enhan-
cing osteogenesis. Subsequent, in vivo studies
examined the effect of intra-peritoneally admi-
nistered leptin in a rat tail suspension model of
bone loss [Martin et al., 2005]. Here, leptin
reduced bone loss by inhibiting osteoclast-
mediated resorptive activity and prevented the
increase of marrow adipose volume [Martin
et al., 2005]. Independent studies have exam-
ined the effect of leptin administration on
leptin-deficient ob/ob mice [Ducy et al., 2000;
Takeda et al., 2002; Hamrick et al., 2004, 2005].
When leptin was infused into the cerebral
ventricles, it stimulated bone loss in both ob/
ob and wild-type mice [Ducy et al., 2000]; these
actions were mediated through sympathetic
outputs and could be blocked with b-adrenergic
antagonists [Takeda et al., 2002]. In contrast,
subcutaneous infusion of leptin to ob/ob mice
led to increased bone mineral content and
decreased bone marrow adipose tissue volume
in the longbones of thehindlimb [Hamricket al.,
2005]. Indeed, Hamrick et al. [2004] andKhosla
[2002] suggest that leptin is an osteogenic factor
in animals that are leptin deficient, but when
circulating leptin levels return to normal,
additional leptin may no longer have a positive
effect on osteogenesis and thereforemayact as a
rheostat of this cellular process.

There is some discrepancy in the literature
concerning the skeletal phenotype of the ob/ob
mice [Ducy et al., 2000; Hamrick et al., 2004].
While one group found that leptin deficiency
promotes greater bone mass [Ducy et al., 2000],
a second group reported that leptin deficiency
had variable effects, increasing bone mineral
density in the vertebral bodies while decreasing
it in the long bones of the hindlimb [Hamrick
et al., 2004]. Consequently, the role of leptin and

TABLE I. Signal Pathways

Leptin
Wnt
TGFb/BMP
CCN
Delta-like kinase (Dlk)/Pref-1
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its mechanism of action in regulating the
balance between adipocytes and osteoblasts
remain controversial.

The Wnt signaling pathway encompasses
multiple ligands, antagonists, receptors, co-
receptors, and transcriptional mediators, such
as b-catenin [Logan and Nusse, 2004]. Specific
elements of the Wnt signaling pathway have
been found to inhibit adipogenesis [Ross et al.,
2000, 2002; Bennett et al., 2002] while promot-
ing osteogenesis [Gong et al., 2001; Boyden
et al., 2002; Kato et al., 2002; Little et al., 2002;
Bennett et al., 2005]. Wnt inhibition of adipo-
genesis is mediated via b-catenin, which inter-
feres with PPARg transcriptional activation of
downstream targets [Liu and Farmer, 2004].
The b-catenin function can be modulated by
glycogen synthase kinase 3 b (GSK3 b) inhibi-
tors, suggesting that this class of drugs could be
used to direct MSC differentiation [Liu and
Farmer, 2004]. Loss of function mutations or
deletion of the Wnt co-receptor, LDL receptor-
related protein 5 (LRP5), caused bone loss and
osteopenia in murine models and patients
[Gong et al., 2001;Kato et al., 2002]. In contrast,
an inherited point mutation in the LRP5 gene
has been associated with enhanced bone forma-
tion and bone density in patients [Boyden et al.,
2002; Little et al., 2002] and has beenmimicked
in a transgenic murine model [Babij et al.,
2003]. Like LXR, LRP5 is associated with
cholesterol metabolism since deficient mice are
hypercholesterolemic [Fujino et al., 2003]. Mice
deficient in the Wnt antagonist Dickkopf 2
(DKK2) gene displayed reduced bone marrow
MSC osteoblast differentiation in vitro and
osteopenia in vivo [Li et al., 2005]. The temporal
relationship of DKK2 expression relative to the
Wnt protein Wnt7B influences MSC lineage
commitment [Li et al., 2005]. In vitro studies
determined that forced expression of DKK2
prior to Wnt7B blocked osteoblast function,
while expression subsequent to Wnt7B
enhanced mineralization [Li et al., 2005].

TheWntpathwayworks in co-ordinationwith
other transmembrane signals. Following expo-
sure to TGF-b, human bone marrow MSCs
increased their expression of various Wnt
receptors and ligands [Zhou et al., 2004]. This
correlated with an inhibition of adipogenesis
and an enhanced chondrogenesis [Zhou et al.,
2004]. Independent studies have shown that
TGF-b treatment inhibited the induction of the
adipogenic transcription factors C/EBPa, C/

EBPb, and PPARg during skeletal unloading
in rodent models [Ahdjoudj et al., 2002, 2005].
These results suggest that similar networking
occurs between the Wnt pathway and other
TGF-b related cytokines such as the BMPs.
Another pathway to consider is theCNN family,
which includes connective tissue growth factor
(CTGF), cysteine rich protein 61 (Cyr61),
nephroblastoma over expressed (NOV), and
the Wnt induced secreted proteins 1–3
(WISP1-3) [Jiang et al., 2004]. These secreted
proteins bind to integrins and other extracel-
lular matrix proteins and regulate cell migra-
tion, proliferation, and differentiation. The
expression of CNNs in human bone marrow
MSCs are differentially regulated during adi-
pogenesis, chondrogenesis, and osteogenesis
[Schutze et al., 2005]. It remains to be deter-
mined if the CNNs are downstream targets of
the Wnt pathway regulating MSC proliferation
and lineage selection.

The protein Pref-1, a member of the epider-
mal growth factor family also known as delta-
like kinase 1 (dlk1) influences adipogenesis and
osteogenesis. Pref-1 was initially identified as a
cleavable surface protein highly expressed on
pre-adipocytes and downregulated during adi-
pogenesis [Smas and Sul, 1993; Smas et al.,
1997]. The cleaved Pref-1 protein acts to inhibit
adipogenesis [Smas et al., 1997]. Targeted
deletion of Pref-1 generated deficient mice with
increased levels of peripheral adipose tissueand
retarded skeletal growth [Moon et al., 2002].
Since the Pref-1 gene is imprinted, the pattern
of its inheritance influences the phenotype of
heterozygote deficient pups [Moon et al., 2002].
In vitro analysis in human bone marrow MSCs
has determined that Pref-1 overexpression
blocks both adipogenesis and osteogenesis
[Abdallah et al., 2004]. This finding is consistent
with the hypothesis that Pref-1 maintains
MSCs in a multipotent state [Abdallah et al.,
2004]. Pref-1 provides a novel example of a
signal transduction pathway that is under epi-
genetic control. It will be exciting to follow
developments in the Pref-1 story as new techno-
logies emerge targeting epigenetic phenomena,
such as CpG island genomic microarrays.

CONTROLLED SUBSTANCE ABUSE: ALCOHOL

While total caloric intake controls adipose
tissue development, the type of nutrients is also
a factor influencing the volume and location of
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adipose tissue deposition. This holds true in the
bone marrow where in vitro studies using
humanMSCs have shown that alcohol exposure
directly stimulates adipogenesis by inducing
PPARg expression [Wezeman and Gong, 2004].
At the same time, alcohol inhibited human
MSC mineralization and alkaline phosphatase
expression [Gong and Wezeman, 2004]. In vivo
studies using rats fed an alcohol-enriched liquid
diet determined that alcohol exposure increased
the triglyceride content of the femoral marrow
[Wezeman and Gong, 2001]. This correlated
with an increased marrow cavity volume,
decreased cortical bone thickness, and, in the
case of male rats, an elevation of estrogen levels
[Wezeman and Gong, 2001]. These experimen-
tal observations were consistent with clinical
studies of alcoholics, who displayed increased
marrow adiposity and osteopenia [Wezeman
and Gong, 2004]. These studies raise additional
questions, specifically: (a) is there a specific
alcohol receptor functioning within MSCs and,
(b) if so, does this mediate the effects of alcohol
on bone and fat metabolism?

PROTEASE INHIBITORS

The advent of protease inhibitors for the
human immunodeficiency virus (HIV) treat-
ment has uncovered new aspects of adipose and
bone metabolism. Patients receiving this class
of drugs exhibit selective lipodystrophy and
decreased bone mass [Jain and Lenhard, 2002].
In rat calvarial cultures, a subset of HIV
protease inhibitors enhanced osteoclast activity
and bone resorption [Jain and Lenhard, 2002].
Likewise, in vitro studies using human MSCs
showed that a subset of HIV protease inhibitors
inhibited biomarkers of adipocyte and osteo-
blast differentiation [Jain and Lenhard, 2002].
It remains to be determined if naturally occur-
ring protease inhibitors mediate similar func-

tions. A potential candidate is visceral adipose
tissue-derived serine protease inhibitor (Vaspin),
initially identified as an adipocytokine in obese
rats [Hida et al., 2005]. Vaspin administration
to obese rats improved insulin sensitivity and
reversed the induction of adipose genes induced
by a high fat/high sucrose diet [Hida et al.,
2005]. Studies are indicated to determine if
vaspin or related endogenous protease inhibi-
tors influence bonemarrowMSCdifferentiation
and function, in vitro and in vivo.

CONTROLLING THE TURF

The signals directing MSC differentiation
have a structural as well as biochemical basis
[McBeath et al., 2004]. Investigators have
manipulated the shape of human MSC in vitro
by culturing the cells on surfaces prepared with
adhesion molecule coatings at different densi-
ties [McBeath et al., 2004].When bound to high-
density surfaces, the MSCs took on a flattened
appearance and underwent osteogenesis; on a
low-density surface, the MSCs rounded up and
underwent adipogenesis [McBeath et al., 2004].
These same cellular differentiation events were
achieved by modulation of the RhoA, an actin/
myosin-dependent GTPase. This seminal study
demonstrates that an alteration of an MSC’s
biophysical and mechanical properties can
cause distinct differentiation outcomes
[McBeath et al., 2004]. RhoA and other biome-
chanically-linked pathways may provide novel
targets for drug discovery.

TAKE A DEEP BREATH FOR AEROBIC EXERCISES:
HYPOXIA AND ANTIOXIDANT

Like any other cell, bone marrow MSCs
require oxygen tomaintainmetabolic activities.
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While the actual oxygen tension in the marrow
cavity is less than that in highly perfused
organs such as the lung or heart, it is higher
than putative ‘‘hypoxic’’ sites such as articular
cartilage. In vitro studies indicate that oxygen
levels directly influence bone marrow MSC
adipogenesis [Fink et al., 2004; Zhou et al.,
2005]. Low ambient oxygen (2%) or the hypoxia
mimetic compound deferoxamine blocked
induction of adipocyte differentiation in human
and murine MSCs [Zhou et al., 2005]. Based on
studies using cells derived fromSmad3�/�mice,
the TGFb mediated the inhibitory effects of
hypoxia. Likewise, studies using hypoxia indu-
cible factor-1a�/� deficient mice have deter-
mined that the HIF-1a transcription factor
contributes to hypoxic inhibition of adipogen-
esis [Yun et al., 2002]. Cells lacking HIF-1a
undergo adipogenesis even under hypoxic con-
ditions [Yun et al., 2002]. Similarly, murine
MSCs deficient in redox enzyme, superoxide
dismutase 2, displayed spontaneous adipogen-
esis, and an enhanced response to adipogenic
agonists [Lechpammer et al., 2005]. Never-
theless, independent studies on human bone
marrow-derived MSCs suggest that the adipo-
genic effects of oxygen may be dose or species
dependent [Fink et al., 2004]. In the presence of
1% oxygen and the absence of adipogenic
agents, human MSCs spontaneously accumu-
lated lipid inclusions; however, this occurred
without a concurrent induction of the adipo-
genic transcription factors PPARg and steroid
response element binding protein (SREBP1c)
and their downstream targets, lipoprotein
lipase, and aP2/fatty acid binding protein 4
[Fink et al., 2004]. Together, these findings
indicate that oxygen tension and cellular redox
pathways influence bone marrow adipogenesis.
While it remains to bedetermined if this directly

correlates with reciprocal changes in osteogen-
esis, the existing data lends itself to such a
conclusion.

Unlike bone, the vascular supply to the
cartilage is limited. It is widely assumed that
cells of the cartilage are hypoxic and that
limitations in the oxygen supply regulate the
energetic state of the maturing cells. There are
multiple publications indicating that hypoxia
enhances chondrogenesis, both in vitro using
MSCs and in vivo using HIF-1 a�/� deficient
mice [Lennon et al., 2001; Schipani et al., 2001;
Robins et al., 2005; Wang et al., 2005]. Various
reports lend strong support to the view that
chondrocytes are very well adapted to low
oxygen tensions; thus, under hypoxic condi-
tions, there is a high level of expression of
both HIF and AP-1, and energy conservation
appears to be near maximum [Rajpurohit et al.,
1996]. Therefore, it is feasible that hypoxic
inhibition of MSC adipogenesis promotes chon-
drogenesis and endochondral bone formation.

AT THE BOTTOM OF THE SANDBOX:
HEMATOPOIESIS AND PLAYING WITH

BLOOD CELLS

Adipogenesis and osteogenesis in the bone
marrow occur in concert with the equally
complex process of hematopoiesis [Gimble,
1990]. There has been renewed attention to
the concept of thehematopoietic stem cell (HSC)
‘‘niche’’ within the bone marrow microenviron-
ment [Kincade et al., 1989; Taichman and
Emerson, 1994; Calvi et al., 2003; Zhang et al.,
2003]. Evidence from in vivo and in vitromurine
studies indicates that osteoblasts, under the
regulation of PTH, notch ligand, and BMP,
support HSC proliferation in vivo [Calvi et al.,
2003; Zhang et al., 2003]. There is also evidence
that cells once identified as ‘‘stromal’’ cells and
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now characterized as multipotent MSCs are
responsible for creating the HSC ‘‘niche’’
[Kincade et al., 1989]. Anatomical mapping
studies indicate that multipotent MSCs with
adipogenic, chondrogenic, and osteogenic prop-
erties co-localize to the hematopoietic sites in
the developing murine embryo [Mendes et al.,
2005]. The MSCs appear in the aorta-gonadal
mesonephros and bonemarrowprior to the time
when each site becomes hematopoietic [Mendes
et al., 2005]. Indeed, human bone marrow
adipocytes supported CD34þ HSC differentia-
tion along the lymphoid and myeloid pathways
[Corre et al., 2004], consistent with findings
using comparable murine cells [Gimble et al.,
1990, 1992]. Moreover, in Smad3�/� deficient
mice, disruption of the TGFb signaling pathway
enhanced both hematopoiesis and adipogenesis
[Epperly et al., 2005]. These results continue to
reinforce the fact that bone marrow adipogen-
esis and osteogenesis cannot be divorced from
hematopoiesis.

TRANSDIFFERENTIATION POTENTIAL OF
EXTRAMEDULLARY ADIPOSE TISSUE CELLS:

PLASTIC IN A MATERIAL WORLD

An important question to consider is whether
MSCs can transit between two ‘‘terminally’’
differentiated states? There is in vitro and in
vivo evidence to support this hypothesis. Cloned
human bone marrow MSCs are capable of
multiple lineage differentiation (adipocyte,
chondrocyte, osteoblast) [Nuttall et al., 1998;
Pittenger et al., 1999; Wolf et al., 2003]. Human
MSCs are capable of expressing both adipogenic
and osteogenic biomarkers simultaneously,
consistent with a plasticity model [Ponce et al.,
2005]. Moreover, single cell-derived human

MSC clones can sequentially differentiate into
adipocytes, dedifferentiate, and subsequently
transdifferentiate into osteoblasts in vitro
[Song and Tuan, 2004]. This plasticity has
important therapeutic implications because it
means that there is not an early commitment to
a particular lineage differentiation. Even
though cells may be differentiating (or indeed
differentiated) down a particular lineage, ther-
apeutic interventionmay cause these same cells
to transdifferentiate. Interestingly, it has been
reported that even though osteoblasts were
actively secreting osteocalcin, a phenotypic
marker of a late stage differentiated osteoblast,
they were still able to undergo adipogenesis
when the culture conditions were modified
[Nuttall et al., 1998]. The reports from Ponce
et al. [2005], Oreffo et al. [2005b], and Nuttall
et al. [1998] argue that perhaps cells can
maintain an intermediate phenotype which is
able to express a hybrid of characteristics of
both adipocytes and osteoblasts. It is tempting
to speculate that such a cell is capable and/or
susceptible to perturbations in the local envir-
onment allowing ‘phenotypic drift’ when
required. Indeed, the potentiality of the bone
marrowMSCsmay extend to additional lineage
pathways. Consistent with this hypothesis is
the fact that Oct-4 is expressed in BMSC’s
derived from rhesus monkeys [Izadpanah et al.,
2005]. Evidence suggests that Oct-4 expression
is confined to cells that share a toti/pluripotent
phenotype [Pesce and Scholar, 2001].

Adipose-derived stem cells (ASCs) isolated
from extramedullary fat depots of multiple
species (human, rhesus monkey, murine) dis-
play multipotent properties, differentiating
along the adipocyte, osteoblast, and other path-
ways [Halvorsen et al., 2001a,b; Zuk et al., 2001,
2002; Hattori et al., 2004; Hicok et al., 2004;
Justesen et al., 2004b; Guilak et al., 2005;
Izadpanah et al., 2005; Rodriguez et al.,
2005a,b]. Comparison of human bone marrow-
derived MSCs and ASCs indicate that while
they share common functionality in terms of
differentiation, they differ based on microarray
analysis of gene expression [Lee et al., 2004].
Whether or not ASCs andMSCs are distinct cell
populations remains a controversial topic that
merits further investigation. Regardless of
the outcome of this discussion, each cell type
represents a potential tool for future regenera-
tivemedical applications [Gimble, 2003;Gimble
and Guilak, 2003; Rodriguez et al., 2005].
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BETTER LIVING THROUGH RECOMBINATION:
TRANSGENIC MURINE MODELS

As the number of transgenic or gene deficient
mice has increased, phenotypes reflecting
altered bonemarrow adipogenesis and/or osteo-
genesis have been encounteredmore frequently
(Table II). Several models display a reciprocal
relationship between bone marrow adipogen-
esis and osteogenesis. These include mice
transgenic for D-Fos B protein, a component of
the AP-1 transcription factor, and a congenic
strain exhibiting reduced expression of IGF-1
[Kveiborg et al., 2004; Rosen et al., 2004]. A
similar phenotype is observed in wild-type mice
made acutely diabetic by streptozotocin treat-
ment [Botolin et al., 2005].Mice transgenic for a
dominant negative form of the N-cadherin
adhesion molecule exhibited reduced osteogen-
esis and increased peripheral adipose tissue
[Castro et al., 2004]. Although marrow adipose
tissue content was not directly examined, these
findings appear to support a reciprocal relation-
ship model. In contrast, transgenic expression
of the truncated form of the adipogenic tran-
scription factor C/EBPb, also known as liver
inhibitory protein, reduced both adipogenesis
and osteogenesis simultaneously [Harrison
et al., 2005; Hata et al., 2005]. Likewise, while
mice deficient in the glucocorticoid metabolic
enzyme 11-b hydroxysteroid dehydrogenase
displayed reduced adipocyte numbers, their
bone histomorphometry was normal [Justesen
et al., 2004a].These are just someof the relevant
geneticmurinemodels, and it is likely thatmore
will appear to shed further insights (and
possibly confusion) on the mechanisms regulat-
ing bone marrow MSC commitment.

COMING OF AGE

Pioneering histological studies have firmly
established the direct relationship between

advancing age, increased adipocyte numbers,
and decreased bone formation [Custer and
Ahfeldt, 1932; Vost, 1963; Hartsock et al.,
1965]. Osteoporosis exacerbates this phenom-
enon by increasing the proportion of adipocytes
in the marrow cavity [Meunier et al., 1971] and
recent studies provide further confirmatory
evidence [Verma et al., 2002]. In vitro studies
using isolated human MSCs cultured in three-
dimensional sponges demonstrate that the
expression of osteogenic markers as well as
the osteoclast antagonist, osteoprotegerin,
decreased with advancing age [Makhluf et al.,
2000; Mueller and Glowacki, 2001]. These
findings have potential implications with
respect to the treatment of age-related bone
loss [Ahdjoudj et al., 2004]. These data argue
that intrinsic changes to the cells in the aged
skeleton contribute to their altered differentia-
tion status and that changes in circulating
systemic factors do not account exclusively for
this phenomenon.

INTO THE FUTURE

The literature relating to the bone/fat rela-
tionship continues to expand, reflecting the
growing appreciation of this issue at the basic
science and clinical levels. While there remains
significant support for the inverse relationship

TABLE II. Genetic Modulation of Marrow Phenotype

Gene target

Marrow phenotypes

Adipogenesis Osteogenesis Other Reference

D-Fos B Tg # " Kveiborg et al. [2004]
11 b HD�/� # Normal Justesen et al. [2004]
IGF-1 reduced congenic " # Rosen et al. [2004]
Dom. NegN-cadherin Tg Not examined # " body fat Castro et al. [2004]
C/EBP b (LIP) Tg # # Harrison et al. [2005];

Hata et al. [2005]

DomNeg, dominant negative transgene; HD, hydroxysteroid dehydrogenase; IGF-1, insulin-like growth factor-1; LIP, liver inhibitory
protein; Tg, transgene.
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model, we need to consider alternative explana-
tions and paradigms. The bone marrow MSC
may considermultiple differentiation pathways
during its lifetime and, indeed, may dediffer-
entiate and transdifferentiate in response to
changes in the microenvironment. One word
of caution as this field develops is that the
characterization of cell phenotypebased on ‘cell-
specific markers’ does not necessarily provide
definitive evidence of functionality. This has
been argued by Oreffo et al. [2005] who suggest
that caution is required in interpretation of cell
plasticity. Nevertheless, modulation of cell
phenotype opens opportunities for preventive
and interventional therapies to address the
growing problem of osteoporosis in the aging
population. TheMSCs provide an in vitromodel
for drug discovery and can be used to screen
small molecule combinatorial libraries for
agents that block adipogenesis and enhance
osteogenesis. In addition, genomic, metabolo-
mic, and proteomic approaches centered on the
MSC may uncover novel molecules or genes
relating to differentiation. These tools may
identify alternative metabolic pathways as
targets for intervention. While we have routi-
nely used chemical agents to treat chronic
medical diseases, alternative modalities may
prove feasible. It may be possible to use MSCs
and other adult stem cells as therapeutic
entities in their own right. The MSCs, together
with biocompatible matrices, can be used to
accelerate repair processes in orthopedic proce-
dures [Bruder et al., 1998]. Using genetic
engineering approaches, it will be possible to
use MSCs to target specific cytokines, growth
factors, or other proteins directly to themarrow
microenvironment for regenerative purposes
[Justesen et al., 2001; Ballas et al., 2002].
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